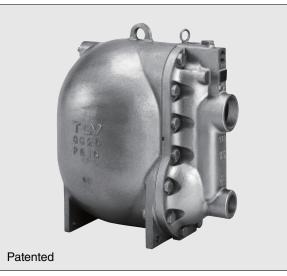
PowerTrap

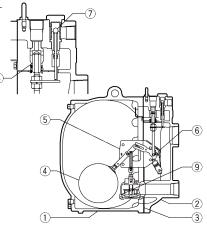

MODEL GT10 CAST IRON CAST STEEL

MECHANICAL PUMP WITH STEAM TRAP FOR CONDENSATE REMOVAL AND RECOVERY

Features

Pump/Trap with built-in steam trap for a wide range of applications: drainage of heat exchangers, flash steam recovery systems and non-vented receivers such as low-pressure stages of turbines and absorption chillers, often operating under vacuum conditions.

- 1. Handles high-temperature condensate without cavitation.
- 2. No electric power or additional level controls required, hence INTRINSICALLY SAFE.
- 3. Pump will operate with a low filling head.
- 4. Durable nickel-based alloy compression coil spring.
- 5. Easy, inline access to internal parts simplifies cleaning and reduces maintenance costs.
- 6. High-quality stainless steel internals and hardened working surfaces ensure reliability.


Specifications

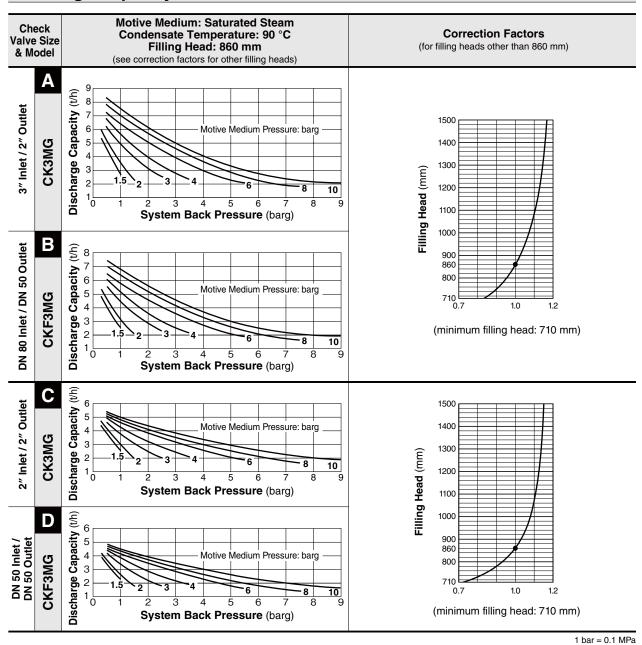
Model		GT10				
Body Materia	al		Cast Iron	Cast Steel		
Composition	Pumped Medium Inlet & C	Dutlet	Screwed	Screwed	Flanged	
Connection	Motive Medium & Pump Ex	haust	Screwed	Screwed Screwed		
Size (mm)	Pumped Medium Inlet × Outlet		3"× 2"		DN 50 × 50, 80 × 50	
	Motive Medium Inlet			1″		
	Pump Exhaust Outlet		1″		DN 25	
Maximum Op	perating Pressure (barg)	PMO		10.5		
Maximum Op	perating Temperature (°C)	TMO		185		
Motive Mediu	Im Pressure Range (barg)			0.3 - 10.5		
Maximum Alle	owable Back Pressure		0.5 bar less tha	in motive medium pressure u	sed	
Volume of Ea	ach Discharge Cycle (l)			approximately 30		
Motive Mediu	IM*			Saturated Steam		
Pumped Med	dium**		S	Steam Condensate		
Do not use with	h toxic, flammable or otherwise	hazardous fl	uids.		1 bar = 0.1 MP	

* Do not use with toxic, flammable or otherwise hazardous fluids. ** Do not use for fluids with specific gravities under 0.85 or over 1, or for toxic, flammable or otherwise hazardous fluids. PRESSURE SHELL DESIGN CONDITIONS (NOT OPERATING CONDITIONS): Maximum Allowable Pressure (barg) PMA: 13 (Cast Iron), 16 (Cast Steel) Maximum Allowable Temperature (°C) TMA: 200 (Cast Iron) 220 (Cast Steel)

To avoid abnormal operation, accidents or serious injury, DO NOT use this product outside of the specification range. Local regulations may restrict the use of this product to below the conditions quoted. CAUTION

No.	Description		Material	DIN*	ASTM/AISI*
	Death		Cast Iron FC250	0.6025	A126 CI.B
1 Body			Cast Steel** A216 Gr.WCB	1.0619	—
2 Cover			Cast Iron FC250	0.6025	A126 Cl.B
Ø	Cover		Cast Steel** A216 Gr.WCB	1.0619	—
3	Cover Gasket		Graphite Compound	—	—
4	Float		Stainless Steel SUS316L/303	1.4404/1.4305	AISI316L/303
(5)	Lever Unit		Stainless Steel	—	—
6	Snap-action L	Init	Stainless Steel	—	—
	Motive	Intake Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C
7	Medium Intake Valve Unit	Valve Seat	Cast Stainless Steel A351 Gr.CF8/ Stainless Steel SUS440C	1.4312/ 1.4125	—/ AISI440C
(8)	Exhaust	Exhaust Valve	Stainless Steel SUS303/440C	1.4305/1.4125	AISI303/440C
(8)	Valve Unit	Valve Seat	Stainless Steel SUS420F	1.4028	AISI420F
9	Trap Unit		Stainless Steel	—	—
(10)	Check	CK3MG	Cast Stainless Steel A351 Gr.CF8	1.4312	
0	Valve***	CKF3MG	Cast Stainless Steel A351 Gr.CF8	1.4312	—

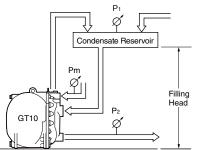
Copyright © TLV


* Equivalent materials ** Option: Cast Stainless Steel

*** Not shown, model depends on GT10 connection; CK3MG for screwed, CKF3MG for flanged

TLV

Consulting & Engineering Service

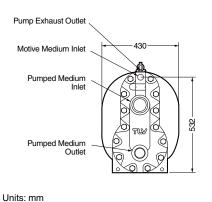

Discharge Capacity

NOTE:

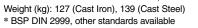
- A check valve must be installed at both the pumped medium inlet and outlet. To achieve the above capacities with the standard GT10 configuration, TLV CK3MG or CKF3MG check valves must be used.
- Motive medium pressure minus back pressure must be greater than 0.5 bar.
- A strainer must be installed at the motive medium and pumped medium inlets.

Illustration of Filling Head and Pressures

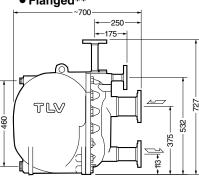
The discharge capacity is determined by the motive medium, motive medium pressure (Pm) and back pressure (P2).


Make sure that:

Discharge Capacity × Correction Factor > Required Flow Rate


TLV

Consulting & Engineering Service

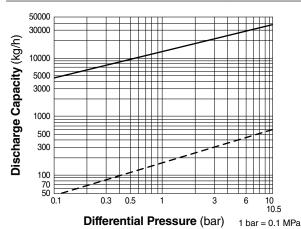

Dimensions

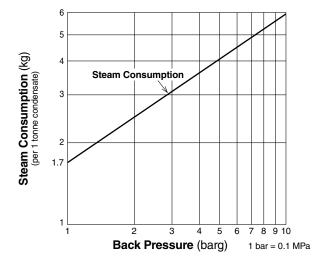
Screwed*

Flanged**

Weight (kg): 149 (Cast Steel) ** DIN 2501 PN 25/40, ASME Class 150 RF, other standards available

Size of Reservoir


The reservoir must have a capacity sufficient to store the condensate produced during the **PowerTrap** operation and discharge.


Amount of Condensate	Reservoir Diameter (mm) and Length (m)							
(kg/h)	40	50	80	100	150	200	250	
300 or less	1.2m	0.7						
400	1.5	1.0						
500	2.0	1.2	0.5					
600		1.5	0.6					
800		2.0	0.8	0.5				
1000			1.0	0.7				
1500			1.5	1.0				
2000			2.0	1.3	0.6			
3000				2.0	0.9	0.5		
4000					1.2	0.7		
5000					1.4	0.8	0.5	
6000					1.7	1.0	0.6	
7000					2.0	1.2	0.7	
8000						1.3	0.8	
9000						1.5	0.9	
10000						1.7	1.0	

Size of Reservoir (flash steam is not involved)

Reservoir length can be reduced by 50% when the motive medium pressure (Pm) divided by back pressure (P₂) equals 2 or greater (when Pm \div P₂ \ge 2).

GT10 Steam Trap Discharge Capacity

Steam Consumption (Motive Medium)

- Capacity of GT10 as a steam trap (P₁ > P₂). Instantaneous condensate loads above the rated trap capacity will cause the pump to cycle and therefore reduce the discharge capacity.
- ---- : Minimum amount of condensate required to prevent steam leakage.
- 1. Capacities are based on continuous discharge of condensate 6 °C below steam temperature.
- 2. Differential pressure is the difference between inlet and outlet pressure of the trap.

DO NOT use this product under conditions that exceed maximum differential pressure, as condensate backup will occur!

Consulting & Engineering Service

Memo:

Manufacturer

http://www.tlv.com

SDS U2404-04 Rev. 4/2014

Products for intended use only. Specifications subject to change without notice.